
ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 10, October 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41069 324

DupliCut: Redundant File Finder and Remover

Sumita Chandak
1
, Abhishek Kadam

2
, Bhagyashree Gawade

3
, Jidnyesh Sankhe

4
, Rohish Badkar

5

Lecturer, Information Technology, Atharva College of Engineering, Mumbai, India
1

Student, Information Technology, Atharva College of Engineering, Mumbai, India
 2,3,4,5

Abstract: Desktop environment provides storage as an essential service. Data storage is the aim when users outsource

their data to be stored in a place irrespective of the locations. File systems are actually designed to control how files are

stored and retrieved. Without knowing the context and semantics of the content, file systems often contain duplicate

copies and result in redundant consumptions of storage space and network bandwidth. It has been a tedious and

challenging issue for enterprises to seek reduplication technologies to reduce cost and increase the storage efficiency. In

order to solve such problem, hash values for files have been computed. The hash function competition to design a new

cryptographic hash standard `SHA-3' is currently one of the well-known topics in cryptologic research, its outcome

largely depends on the public evaluation. Testing the finalists in the competition for a new SHA-3 standard shows

generally fast, secure hashing algorithms with few collisions and problems. Focus of computation is performed for

duplicate and redundant knowledge removal. Hash computation is done by the method of comparing files initially and

followed by SHA3 signature comparison. Saves time and enhances accessibility. It helps you reclaim your valuable

storage space and keep your data secure. It provides fast and efficient way to detect and remove duplicate files.

Therefore, ample memory can be saved by running DupliCut.

Keywords: Redundant data, DupliCut, SHA-3, Storage efficiency.

I. INTRODUCTION

As the voluminous of web documents increases on

internet, it is a burden to search engines to provide the

relevant information to the user query. In addition, more

number of duplicates of documents also grows

simultaneously on the web which increases the retrieval

time and reduces the precision of the retrieved documents.

Therefore to identify duplicate and near-duplicate web

pages, researchers using the complexity algorithms rather

using the classification algorithms [4].

A hash function is any function that can be used to map

digital data of arbitrary size to digital data of fixed size,

with slight differences in input data producing very big

differences in output data. The values returned by a hash

function are called hash values, hash codes, hash sums, or

simply hashes. One practical use is a data structure called

a hash table, widely used in computer software for rapid

data lookup. Hash functions accelerate table or database

lookup by detecting duplicated records in a large file.

They are also useful in cryptography [1]. A cryptographic

hash function allows one to easily verify that some input

data matches a stored hash value, but makes it hard to

reconstruct the data from the hash alone. When storing

records in a large unsorted file, one may use a hash

function to map each record to an index into a table T, and

collect in each bucket T[i] a list of the numbers of all

records with the same hash value i. Once the table is

complete, any two duplicate records will end up in the

same bucket. Duplicates can then be found by scanning

every bucket T[i] which contains two or more members,

fetching those records, and comparing them. With a table

of appropriate size, this method is likely to be much faster

than any alternative approach. A good hash function

should map the expected inputs as evenly as possible over

its output range. That is, every hash value in the output

range should be generated with roughly the same

probability. The reason for this requirement is the cost of

hashing-based methods goes up sharply as the number of

collisions pairs of inputs that are mapped to the same hash

value increases. Basically, if some hash values are more

likely to occur than others, a larger fraction of the lookup

operations will have to search through a larger set of

colliding table entries. A hash function that is used to

search for similar data must be as continuous as possible;

two inputs that differ by a little should be mapped to equal

or nearly equal hash value [12].

II. LITERATURE REVIEWED

 1. Meera K. Krishna Sankar P. and Shriram Kumar K.

proposed to use theSHA-3 algorithm for comparison of

files based on the parameters like file size, storage

occupied by it and contents of file. If files are same based

on parameters, then it will be termed as deduplicated. It

focusses on the following aspects: reducing the space and

bandwidth requirements of data storage services, using

SHA-3 algorithm for the generation of hash code of files,

how deduplication can be used as a side channel which

reveals information about the contents of files of other

users. [1]

 2. Suresh Subramanian, Sivaprakasam addressed storage

space issues through Genetic Algorithm and Duplicate

Web Documents Identification Function. Duplicate Web

Documents Identification Function is used to improve

relevance of retrieved documents by removing the

duplicate records from the dataset. The paper focuses on

detection and removal of duplicate web pages and nearly

duplicated web pages from the dataset used for finding the

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 10, October 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41069 325

fitness function applied in Genetic Algorithm using rank

based objective function. [4]

3. Nayana M S, Mrs Bindu A U presented a compact

design of newly selected Secure Hash Algorithm (SHA-3)

by dividing the basic Keccak architecture in to padder

module and permutation module that reflects the sponge

construction from which algorithm can be easily

generated. The design techniques were proposed in the

basic SHA-3 architecture in order to achieve better time

performance. [9]

III. PROPOSED SYSTEM

The Keccak algorithm was the winner of the SHA-3

competition. The Keccak function is created using a

number of sponge functions. The Keccak sponge function

is made up of seven permutation functions of different bit

lengths. The seven permutation functions are then used in

XOR and composed of basic logic functions that can be

reduced. The Keccak algorithm requires two different

configurations for the 256-bit and 512-bit message digest

sizes. The Keccak algorithm does not require the use of

any RAM in the implementation [3]. Input files of similar

type are gives as input for SHA-3 algorithm computation.

Initially the state is assigned with zero. Padding is

performed i.e. appending bits. Absorb the input into the

state; that is, for each piece, XOR it into the state and then

block permutation is applied. The hash value for a given

file is computed at a same rate as input. Then hash values

of two files are compared to detect the duplication. If the

hash values of similar type of files that had been taken are

true, then one of the duplicate file is removed. Otherwise,

it returns false. In [2], every single compression function

of Keccak composed of 24 rounds. Every single

compression function of Keccak composed of 24 rounds.

The SHA 3 algorithm provides a good security for the data

using the authentication format by generating hash code

[2].

IV. SYSTEM IMPLEMENTATION

Fig. 1. Main application

In Fig. 1, the main application working is described. The

following paragraphs give detailed information about

every step in duplicate file detection process.

EVALUATING FILE PROPERTIES:

Initially the files that are taken as input is compared by

parameters like size, memory occupied on the disk by each

files and content of both files. If both files are same under

these parameters, then it is loaded into the buffer to detect

the similarity between the files and one of the files is

removed by its hash values [1].

GENERATING HASH VALUES BASED ON SHA3:

As shown in Fig 2, hash values for files are manipulated

under sponge construction which is defined by NIST.

Padding of the bits is compulsory with '0' and '1' first and

last respectively until the resulting ≠ bit length which =

448 mod 512,and the last of bit length of the original

message as 64-bit integer. The last bit length of the

message which is already padded is 512N for a true

integer N [11].

Fig. 2. SHA-3 Generator

FILE COMPARISON:

Hash values of various bits are obtained under SHA-3

algorithm. If hashes of two files are same, then it shows

that same kind of file is copied at many places in an

environment. Files are selected for comparison in

windows Environment. One of the files is removed.

Before produce the hash value, it checks content of file

with another file. Hash value based on file content, is

spawned [12].The beauty of the new approach is simple,

and the output list is free from redundant documents and

the output list is having the more promising results [4].

EXECUTING IN .NET PLATFORM:

In Fig. 3, directions of how the process executes itself is

given .File comparison is based on SHA-3(Keccak

algorithm). It is implemented in dot net environment. It

starts with checking for files in the given memory or space

defined. Hash values of similar files like .txt, .jpeg, .avi,

.mpeg is computed. If the hash values computed are same,

then one of the files is removed according to given

parameter.

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 10, October 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41069 326

Fig. 3. Sequence of processes.

V. EXPECTED RESULTS

The DupliCut application, by using SHA 3 algorithm

provides a good security for the data using the

authentication format by generating hash code. Also the

whole design has a simple hardware structure and fast

running speed and can be widely used in digital signatures

and 3DES key generation systems. [2]Also, the time

complexity of SHA-3(Keccak) is less than its rivals like

SHA-2 and MD5.

VI. CONCLUSION

The file systems built into modern Operating Systems do

not provide adequate support for managing file

duplication. File duplication can be identified in detail

with initial comparison of files, followed by MD5

algorithm in earlier and by SHA-3 algorithm in later.

Based on MD5 and SHA-3, hash values for files have been

generated. One of the redundant files is removed, if hash

values of similar type files are same. The time taken to

compute hash value by SHA-3 is much lesser than MD5,

SHA-2, and SHA-1. SHA-1, SHA-2, MD5 consumes more

memory than SHA-3 algorithm. The performance of SHA-

1, SHA-2, MD5 hash function is severely compromised in

terms of memory consumption and time compared with

SHA-3 algorithm. SHA-3 helps in retrieving valuable disk

space and in improving the efficiency. SHA-3 is the best

in identifying the redundant files in a desktop

environment. The final SHA-3 candidates show much

promise in terms of performance. SHA-3 hashing

algorithm incorporated into an environment for detecting

the redundant files and for removing it.

It gives us great pleasure in presenting this project report

titled: “DupliCut: Redundant File Finder and Remover.”

On this momentous occasion, we wish to express our

immense gratitude to the range of people who provided

invaluable support in the completion of this project. Their

guidance and encouragement has helped in making this

project a great success. We express our gratitude to our

project guide Prof Sumita Chandak, who provided us with

all the guidance and encouragement and making the lab

available to us at any time. We also would like to deeply

express our sincere gratitude to Project coordinators. We

are eager and glad to express our gratitude to the Head of

the Information Technology Dept. Prof Neelima Pathak,

for her approval of this project. We are also thankful to her

for providing us the needed assistance, detailed

suggestions and also encouragement to do the project. We

would like to deeply express our sincere gratitude to our

respected principal Prof. Dr. Shrikant Kallurkar and the

management of Atharva College of Engineering for

providing such an ideal atmosphere to build up this project

with well-equipped library with all the utmost necessary

reference materials and up to date IT Laboratories. We are

extremely thankful to all staff and the management of the

college for providing us all the facilities and resources

required.

REFERENCES

[1] Meera K. Krishna Sankar P. and Shriram Kumar nK(2015), „Redundant

file finder, remover in mobile environment through SHA-3 algorithm‟,

Electronics and Communication Systems (ICECS), ISBN: 978-1-4799-

7224-1, pp.1440-1447.

[2] 2. Alia Arshad, Dur-e-Shahwarkundi and Arshad Aziz (2014), „Compact

Implementation of SHA3-512 on FPGA‟, Conference on Information

Assurance and Cyber Security (CIACS).
[3] Amar Jaffar and Christopher J. Martinez (2013),„Detail Power Analysis

of the SHA-3 Hashing Algorithm Candidates on Xilinx Spartan-3E‟,

International Journal of Computer and Electrical Engineering, Vol. 5,

No. 4 pp.410-413.

[4] Suresh Subramanian, Sivaprakasam (2014),„Efficient Algorithm for

Removing Duplicate Documents‟, International Journal of Soft

Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-3,

Issue-6.
[5] FatmaKahri, BelgacemBouallegue, MohsenMachhout and

RachedTourki (2013), „An FPGA implementation of the SHA-3: The

BLAKE Hash Function‟, 10th International Multi-Conference on

Systems, Signals & Devices (SSD) pp.1-5.

[6] Jin Kim, Sun-Jung Kim, and Young WoongKo(2014), „Design and

Implementation of File Monitoring Tools for Detecting Similar Files‟,

3rd International Conference on ComputationalTechniques and

Artificial Intelligence pp.79-82.
[7] KamleshkumarRaghuvanshi, PurnimaKhuranaand PurnimaBindal

(2014), „Study and Comparative Analysis of Different Hash Algorithm‟,

Journal of Engineering Computers & Applied Sciences (JECAS) ISSN

No: 2319-5606 Volume 3, No.9 pp.1-3.

[8] Nayana M S, Mrs Bindu A U (2015), "Area-Efficient FPGA

Implementation of Cryptographic SHA3-512", International Journal of

Engineering Trends and Technology (IJETT), V21 (9), 455-460 March
2015. ISSN: 2231-5381.

[9] Penny Pritzker and Patrick D. Gallagher (2014),„SHA-3 Standard:

Permutation-Based Hash and Extendable-Output Functions‟,

Information Tech Laboratory National Institute of Standards and

Technology pp.1-35.

[10] Identifying and Filtering Near-Duplicate Documents Andrei Z. Broder?

AltaVista Company, San Mateo, CA 94402, USA

[11] Piyush Gupta, Sandeep Kumar,„A ComparativeAnalysis of SHA and
MD5 Algorithm‟ (IJCSIT) International Journal of Computer Science

and Information Technologies, Vol. 5 (3) , 2014, 4492-4495

[12] Krishna Sankar P. and Shriram KumarK(2015), „Redundant File Finder,

Remover In Mobile Environment Through SHA-3 Algorithm

„,International Journal of advanced studies in Computer Science and

Engineering IJASCSE, Volume 4, Issue 1, 2015.

